NOTICIAS DIARIAS

Neurons Can Carry Multiple Signals At A Time

Anaesthesiology

Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between sending pieces of each message. New research from Duke University shows that  in the brain may be capable of a similar strategy

In an experiment examining how monkeys respond to sound, a team of neuroscientists and statisticians found that a single neuron can encode information from two different sounds by switching between the signal associated with one sound and the signal associated with the other sound.

"The question we asked is, how do neurons preserve information about two different stimuli in the world at one time?" said Jennifer Groh, professor in the department of psychology and neuroscience, and in the department of neurobiology at Duke.

The results may explain how the brain processes complex information from the world around us, and may also provide insight into some of our perceptual and cognitive limitations. The results appeared July 13 in Nature Communications.

To make the discovery, Groh and her team collaborated with Surya Tokdar, associate professor of statistical science at Duke, to develop and apply several new methods of analysis to their experimental data.

But the reality is rarely so simple. Our brains are capable of processing multiple stimuli at once—such as listening to a friend at a party with music playing in the background, or picking out the buzz of a cicada from a symphony of trilling insects.

"It is not obvious how you go from single neurons encoding single objects, to neurons encoding multiple objects," said Valeria Caruso, a research scientist in Duke's department of psychology and neuroscience. "We wanted to provide an intermediate step, looking at how neurons encode small groups of objects."

To complicate matters, single-neuron studies have shown that many sensory neurons are broadly tuned, meaning each is capable of responding to sounds at a range of different frequencies. For example, the same neurons triggered by your friend's voice may also be triggered by the notes of your favorite tunes.

In the experiment, the researchers sat monkeys in a darkened room and trained them to look in the direction of the sounds that they heard. The researchers played either one sound or two sounds, with each sound at a different frequency and coming from different locations.

Small spikes

To find out how the monkeys' brains encoded both sounds simultaneously, the team used electrodes in the inferior colliculus, a key point in the brain's auditory pathway, to measure the small spikes in the local electric field caused by neurons firing.

The researchers investigated the response of single neurons to both individual sounds and combined sounds. The standard practice in the field is to count how many spikes occur over a period and compute the average of some trials, Groh said. But this method obscures any fluctuations in the activity that might indicate the neurons are switching back and forth between different stimuli.

The team applied a combination of advanced statistical methods, including a new method called a Dynamic Admixture Point Process model developed by Tokdar and his team, to extract more detailed patterns from the data.

They found that a single neuron could respond to one sound with one firing rate, and the second sound with a different firing rate. When both sounds were played simultaneously, it appeared to fluctuate between the two firing rates. Sometimes the fluctuations were fast enough that the neurons switched within a half second of the presentation of the sound, and in other cases, the switching was slower.

These findings provide clues to other circumstances where the brain has to do more than one thing at a time with a limited set of neurons. For example, our working memory—the number of things we can hold in our minds at one time—is constrained to around five to seven items. While these experiments do not directly test working memory, the researchers think further studies may help explain these restrictions.

"Our working memory system is quite limited, and no one knows why," Groh said. "Perhaps that limit arises from some kind of cycling behavior where you are coding one thing at a time, and across a period, the number of things you can represent depends on how long you need to represent each one and how rapidly you can switch."