The researches find that the A new generation of pathology labs mounted on chips is set to revolutionize the detection and treatment of cancer by using devices as thin as a human hair to analyze bodily fluids. The technology’; known as microfluidics, promises portable; cheap devices that could not only enable widespread screening for early signs of cancer but also help to develop personalized treatments for patients; said Ciprian Iliescu, a co-author of a review of microfluidic methods for cancer analysis published in the journal Biomicrofluidics, from AIP Publishing.

The treatment of cancer

If you isolate some cells and expose them to drug candidates, you can predict the response of the patient in advance. Then you can track how the tumor is evolving in response to treatment.” Ciprian Iliescu, researcher; IMT-Bucharest in Romania  The devices scan blood, saliva or urine for certain cells, proteins or tissue that are produced by tumors and then spread throughout the body. The use of fluids as a liquid biopsy, instead of a conventional solid biopsy from a tumor; has many advantages.

It is less invasive, reducing patient discomfort, and also provides information about hard-to-access tumors, such as in unborn children Because the biological clues, or biomarkers; of cancer end up in the bloodstream; a liquid biopsy can give insights to genomic state of all cancer in the body, including at its primary site and if it has spread. The authors call these insights understanding the “global molecular status of the patient.”

Reducing patient discomfort

The biggest challenge is the diversity of cancer. Each of the more than 100 known cancers have their own biomarkers; which the authors classify into four categories: cellular aggregates (circulating tumor microemboli); free cells (circulating tumor cells; circulating endothelial progenitor cells and cancer stem cells); platelets and cellular vesicles (exosomes) and macro- and nanomolecules (nucleic acids and proteins).

A wide range of microfluidic devices are being design to isolate these biomarkers; leveraging on the boom in nano fabrication in recent decades. Complex structures, such as forked flow channels; pillars, spirals and pools, precisely sieve and control flow rates, while surfaces are lined with molecules that attract specific species. Some devices also use electrical, magnetic or acoustic fields to help select the biomarker target and even have smart, built-in electronic circuits for data processing.

There are already devices on the market, such as Cell Search, which isolate circulating tumor cells. However, more sensitive and faster systems are being develop for many different cancer biomarkers. Combining more than one method may help with accuracy, although at the cost of speed. Sensitivity  also be improve by culturing the biomarkers to increase their concentration. Iliescu said the field has potential but is still in its infancy.