Among all plastic debris, plastic particles from 1 mm to 5 mm in size are commonly define as microplastics (MPs); while plastic particles smaller than 1 mm are categorize as nanoplastics (NPs). The classification of nano/microplastics (NPs/MPs); not formally recognize and different categorizations report. A previous study defined MPs as small or large MPs if their size wen below or above 1 mm respectively while another work used the level of resolution; of detected particles to lassify NPs/MPs by increment of 100 mm

Plastics in our waste streams are breaking down into tiny particles; causing potentially catastrophic consequences for human health; and our aquatic systems, finds research from the University of Surrey and Deakin’s Institute for Frontier Materials. Led by Dr Judy Lee and Marie Enfrin from the Department of Chemical and Process Engineering at the University of Surrey and Dr Ludovic Dumée at Deakin’s Institute for Frontier Materials; the project investigated nano and microplastics in water and wastewater treatment processes.

Tiny pieces of plastic break

The team found that tiny pieces of plastic break down further during treatment processes; reducing the performance of treatment plants and impacting on water quality. The study published in Journal of Water Research. There is substantial study of microplastics pollution; but their interaction with water and wastewater treatment processes had not fully understood until now.

However, approximately 300 million tons of plastic are produced globally each year; and up to 13 million tons of that is released into rivers and oceans, contributing to approximately 250 million tons of plastic by 2025. Since plastic materials are not generally degradable through weathering; or aging, this accumulation of plastic pollution in the aquatic environment creates a major concern.

Nano and microplastics treatment systems

The research highlights the current difficulty in detecting the presence of nano; and microplastics in treatment systems. In order to ensure water quality meets the required safety standards and to reduce threats to our ecosystems; new detection strategies are needed with the aim of limiting the number of nano and microplastics in water and wastewater treatment systems.

Dr Lee, Project Lead and Senior Lecturer at the University of Surrey, said: The presence of nano and microplastics in water has become a major environmental challenge. Due to their small size, nano and microplastics can easily be ingested by living organisms and travel along water; and wastewater treatment processes. In large quantities they impact the performance of water treatment processes by clogging up filtration units and increasing wear and tear on materials used in the design of water treatment units.”