A new study, published in Nature Communications, has found a new way of halting the growth of breast cancer cells. In the study, researchers explore a new way to starve cancer cells from their molecular energy source. They hope that their discoveries can be further developed into a new way of treating breast cancer, and possibly other types of cancer.

Breast and prostate cancer are the most common forms of cancer and the number of cases is increasing yearly. Often, these tumors use hormones, such as estrogen or testosterone, to drive their growth, and thus normal treatments aim to block the activity of these hormones. While modern treatments are often successful, cancers can also become resistant to these treatments and develop new ways of propagating.

In the current study, a team of researchers led from Karolinska Institutet and Science for Life Laboratory in Sweden confirmed that hormone-driven breast cancer cells use a newly discovered protein, NUDT5, to produce energy in the cell nucleus. This nuclear energy source provides energy for the expression of genes that drive cancer growth.

In the next stage of their research, they developed a molecule able to block NUDT5 activity and thus deprive the cancer cells of their means of nuclear energy production. They demonstrated that this new molecule can stop the growth of breast cancer cells in isolated laboratory experiments.

The original purpose of the project was to understand the biological function of NUDT5, but this has now shifted and the aim is to progress NUDT5 inhibitors towards clinical testing where these molecules can hopefully help improve treatment options for cancer patients.

"They're exciting findings, but the path ahead is long since we still know very little about how NUDT5 operates," said Professor Thomas Helleday at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, in association with colleagues from Stockholm and Uppsala universities and a team of Spanish researchers.